1ST SOUTHERN AFRICAN CONFERENCE ON THE FIRST-YEAR EXPERIENCE

STELLENBOSCH SEPTEMBER 2008 Paper by

RINA DURANDT & DUAN VAN DER WESTHUIZEN

University of Johannesburg

PAPER - THEME

SUCCESS IN FIRST YEAR MATHEMATICS: A COMPUTER-SUPPORTED PROGRAMME

MOTIVATION				
2006	836	2006	58%	
2007	496	2007	58%	
2008	403	2008	63%	
 Decrease Mathemat Unsatisfie Mathemat 	in the numbe ics students a d throughput ics	er of first year at universities t in first year		

MOTIVATION

Factors leading to underperformance in Mathematics in higher education:

- Poor teaching in Mathematics at school level
- Large classes
- Medium of teaching
- · Inefficient study methods
- Lack in practice of Mathematics techniques Underdevelopment of problem-solving and critical thinking skills

MOTIVATION

Factors framing the academic environment in the South African context:

- Diverse ethnic community (culture)
- Home language versus language of learning Mathematics
- Underprepared for university studies: Background

 - Attitudes, beliefs and emotions (Mathematics anxiety) - Time management, study methods, learning culture
 - Underprivileged (poor)

- MOTIVATION Popular environment of computer-assisted learning Develop aspects of academic maturity and responsibility Different learning styles and assessment strategies
- "students are less likely to move away from studying Mathematics if they enjoy it" (Berger et al., 2005)

MOTIVATIONAL COMMENTS

- "... the web environment seems to facilitate aspects of academic maturity."
- "Technology has great potential to enhance student learning, but only if it is used appropriately"
- "... serious consideration should be given to actively involving students during the practical sessions."
- Instructors should use "culturally sensitive teaching techniques and innovative teaching approaches that integrate Mathematics into a real-world context." (Walker et al., 2000)

<section-header>

<section-header><section-header>

METHODOLOGICAL FRAMEWORK

Qualitative approach to research

- Takes place in the natural setting
- Uses multiple methods that are interactive
- Fundamentally interpretive and uses complex reasoning

Design-based research as the strategy of

inquiry

"The dual objective of developing creative approaches to solving human teaching, learning, and performance problems while at the same time constructing a body of design principles that can guide future development efforts." (Reeves, 2000)

METHODOLOGICAL FRAMEWORK		
Phase 1	Define design principles and guidelines for best practices	
Phase 2	Design of the computer-based tutorial intervention	
Phase 3	Conduct a pilot study to formatively evaluate and redesign the intervention	
Phase 4	Implement the computer-based tutorial intervention in the main study	
Phase 5	Evaluate the computer-based tutorial intervention to construct a body of design principles in the transfer study	

METHODOLOGICAL FRAMEWORK

Qualitative Data Collection types:

- Observation
- Interviews (one on one & group) with different role players:
 - Students
 - Tutor
 - Lecturer
 - Computer facilitator
- Documents (journals, student work)
- Audiovisual materials

POTENTIAL CONTRIBUTION

- To provide **higher education institutions** with guidelines to develop a computer-based tutorial intervention for first-year Mathematics
- In practice to contribute to student development:
 - Computer skills
 - Popular learning environment
 - Learning Mathematics
 - Achievement in Mathematics
 - Development of learning potential

CONTACT DETAILS

Rina Durandt

Instructional Designer

Centre for Technology Assisted Learning (CenTAL) Division for Academic Development and Support University of Johannesburg <u>rdurandt@uj.ac.za</u> (+27) 11 559-2293